3,388 research outputs found

    A Bayesian spatio-temporal model of panel design data: airborne particle number concentration in Brisbane, Australia

    Get PDF
    This paper outlines a methodology for semi-parametric spatio-temporal modelling of data which is dense in time but sparse in space, obtained from a split panel design, the most feasible approach to covering space and time with limited equipment. The data are hourly averaged particle number concentration (PNC) and were collected, as part of the Ultrafine Particles from Transport Emissions and Child Health (UPTECH) project. Two weeks of continuous measurements were taken at each of a number of government primary schools in the Brisbane Metropolitan Area. The monitoring equipment was taken to each school sequentially. The school data are augmented by data from long term monitoring stations at three locations in Brisbane, Australia. Fitting the model helps describe the spatial and temporal variability at a subset of the UPTECH schools and the long-term monitoring sites. The temporal variation is modelled hierarchically with penalised random walk terms, one common to all sites and a term accounting for the remaining temporal trend at each site. Parameter estimates and their uncertainty are computed in a computationally efficient approximate Bayesian inference environment, R-INLA. The temporal part of the model explains daily and weekly cycles in PNC at the schools, which can be used to estimate the exposure of school children to ultrafine particles (UFPs) emitted by vehicles. At each school and long-term monitoring site, peaks in PNC can be attributed to the morning and afternoon rush hour traffic and new particle formation events. The spatial component of the model describes the school to school variation in mean PNC at each school and within each school ground. It is shown how the spatial model can be expanded to identify spatial patterns at the city scale with the inclusion of more spatial locations.Comment: Draft of this paper presented at ISBA 2012 as poster, part of UPTECH projec

    Fast stable direct fitting and smoothness selection for Generalized Additive Models

    Get PDF
    Existing computationally efficient methods for penalized likelihood GAM fitting employ iterative smoothness selection on working linear models (or working mixed models). Such schemes fail to converge for a non-negligible proportion of models, with failure being particularly frequent in the presence of concurvity. If smoothness selection is performed by optimizing `whole model' criteria these problems disappear, but until now attempts to do this have employed finite difference based optimization schemes which are computationally inefficient, and can suffer from false convergence. This paper develops the first computationally efficient method for direct GAM smoothness selection. It is highly stable, but by careful structuring achieves a computational efficiency that leads, in simulations, to lower mean computation times than the schemes based on working-model smoothness selection. The method also offers a reliable way of fitting generalized additive mixed models

    1.6 W continuous-wave Raman laser using low-loss synthetic diamond

    Get PDF
    Low-birefringence (Δn<2x10−6), low-loss (absorption coefficient <0.006cm−1 at 1064nm), single-crystal, synthetic diamond has been exploited in a CW Raman laser. The diamond Raman laser was intracavity pumped within a Nd:YVO4 laser. At the Raman laser wavelength of 1240nm, CW output powers of 1.6W and a slope efficiency with respect to the absorbed diode-laser pump power (at 808nm) of ~18% were measured. In quasi-CW operation, maximum on-time output powers of 2.8W (slope efficiency ~24%) were observed, resulting in an absorbed diode-laser pump power to the Raman laser output power conversion efficiency of 13%

    Reliable estimation of prediction uncertainty for physico-chemical property models

    Full text link
    The predictions of parameteric property models and their uncertainties are sensitive to systematic errors such as inconsistent reference data, parametric model assumptions, or inadequate computational methods. Here, we discuss the calibration of property models in the light of bootstrapping, a sampling method akin to Bayesian inference that can be employed for identifying systematic errors and for reliable estimation of the prediction uncertainty. We apply bootstrapping to assess a linear property model linking the 57Fe Moessbauer isomer shift to the contact electron density at the iron nucleus for a diverse set of 44 molecular iron compounds. The contact electron density is calculated with twelve density functionals across Jacob's ladder (PWLDA, BP86, BLYP, PW91, PBE, M06-L, TPSS, B3LYP, B3PW91, PBE0, M06, TPSSh). We provide systematic-error diagnostics and reliable, locally resolved uncertainties for isomer-shift predictions. Pure and hybrid density functionals yield average prediction uncertainties of 0.06-0.08 mm/s and 0.04-0.05 mm/s, respectively, the latter being close to the average experimental uncertainty of 0.02 mm/s. Furthermore, we show that both model parameters and prediction uncertainty depend significantly on the composition and number of reference data points. Accordingly, we suggest that rankings of density functionals based on performance measures (e.g., the coefficient of correlation, r2, or the root-mean-square error, RMSE) should not be inferred from a single data set. This study presents the first statistically rigorous calibration analysis for theoretical Moessbauer spectroscopy, which is of general applicability for physico-chemical property models and not restricted to isomer-shift predictions. We provide the statistically meaningful reference data set MIS39 and a new calibration of the isomer shift based on the PBE0 functional.Comment: 49 pages, 9 figures, 7 table

    Intracavity Raman conversion of a red semiconductor disk laser using diamond

    Get PDF
    We demonstrate a diamond Raman laser intracavity-pumped by a red semiconductor disk laser (~675 nm) for laser emission at around 740 nm. Output power up to 82 mW of the Stokes-shifted field was achieved, limited by the available pump power, with an output coupling of 1.5%. We also report wavelength tuning of the diamond Raman laser over 736 - 750 nm

    1.4 µm continuous-wave diamond Raman laser

    Get PDF
    The longest wavelength (~1.4 µm) emitted by a diamond Raman laser pumped by a semiconductor disk laser (SDL) is reported. The output power of the intracavity-pumped Raman laser reached a maximum of 2.3 W with an optical conversion efficiency of 3.4% with respect to the absorbed diode pump power. Narrow Stokes emission (FWHM 40 nm was achieved via rotation of an intracavity birefringent filter that tuned the SDL oscillation wavelength

    Processing and characterisation of II-VI ZnCdMgSe thin film gain structures

    Get PDF
    Lattice-matched II-VI selenide quantum well (QW) structures grown on InP substrates can be designed for emission throughout the visible spectrum. InP has, however, strong visible-light absorption, so that a method for epitaxial lift-off and transfer to transparent substrates is desirable for vertically-integrated devices. We have designed and grown, via molecular beam epitaxy, ZnCdSe/ZnCdMgSe multi-QW gain regions for vertical emission, with the QWs positioned for resonant periodic gain. The release of the 2.7 μm-thick ZnCdSe/ZnCdMgSe multi-QW film is achieved via selective wet etching of the substrate and buffer layers leaving only the epitaxial layers, which are subsequently transferred to transparent substrates, including glass and thermally-conductive diamond. Post-transfer properties are investigated, with power and temperature-dependent surface and edge-emitting photoluminescence measurements demonstrating no observable strain relaxation effects or significant shift in comparison to unprocessed samples. The temperature dependant quantum well emission shift is found experimentally to be 0.13 nm/K. Samples capillary-bonded epitaxial-side to glass exhibited a 6 nm redshift under optical pumping of up to 35 mW at 405 nm, corresponding to a 46 K temperature increase in the pumped region; whereas those bonded to diamond exhibited no shift in quantum well emission, and thus efficient transfer of the heat from the pumped region. Atomic force microscopy analysis of the etched surface reveals a root-mean-square roughness of 3.6 nm. High quality optical interfaces are required to establish a good thermal and optical contact for high power optically pumped laser applications

    ~1400-nm continuous-wave diamond Raman laser intracavity-pumped by an InGaAs semiconductor disk laser

    Get PDF
    We present a ~1400nm-emitting diamond Raman laser intracavity-pumped by an ~1180nm semiconductor disk laser. We measured a maximum output power of 2.3 W at ~1400nm with an output coupling of 3.5%. The Raman laser was tunable from 1373 to 1415nm using a 4-mm-thick birefringent filter

    Chalcophile element processing beneath a continental arc stratovolcano

    Get PDF
    The chalcophile elements are important both in terms of their economic value and as potential tracers of magmatic processes at convergent margins. However, because of analytical difficulties, comprehensive datasets of chalcophile element concentrations for volcanic rocks are rare. Here, we present analyses of a near complete suite of chalcophile elements (S, Cu, Ag, Se, As, Sb, Sn, W, Mo, Pb, Bi, Tl, Zn, Ga, Co) for volcanic rock samples collected from a typical continental arc stratovolcano in southern Chile (Antuco). Enrichment in Pb, Bi, W, Tl, Sb and As relative to Parental-MORB indicates that these elements have been mobilised from the subducting slab into the sub-arc mantle wedge, in contrast to Cu and Ag. Very low Se concentrations suggest that Se, like S, was lost during co-eruptive degassing of the Antuco magmas. Previous studies on oceanic arcs have demonstrated that as higher fO2 subduction-related magmas ascend through the overlying lithosphere, magnetite fractionation may trigger sulfide fractionation during crystallisation. If such a process is extensive and has a sharp onset, this would result in a plummet in the Cu, Se and Ag contents of the residual melt. At Antuco, although a decrease in the Fe2O3(T) and TiO2 concentrations at ∼55 wt.% SiO2 (∼3 wt.% MgO) indicates magnetite fractionation, this is not associated with a corresponding drop in Cu contents. Instead, we observe a general decrease in Cu and a decrease in Cu/Ag with increasing SiO2 and decreasing MgO. Furthermore, Cu/Ag in the most primitive Antuco rocks are lower than the global MORB array, indicating that the melts were sulfide saturated at an early stage in their crustal evolution. Through modelling fractional crystallisation, we show that only a minor volume (0.5–0.6 vol.%) of fractionating sulfide is needed to produce divergent trends in Cu and Ag, as observed in the Antuco samples. Our results show that sulfide fractionation occurred from an early stage during the crustal evolution of Antuco's magmas. We infer that this was promoted by stalling in the lower crust, which for oxidised magmas at depths >20 km is within the sulfide stability field. However, elevated DyN/YbN of the Antuco magmas compared to oceanic island arc magmas provides an additional, or alternate mechanism to inducing sulfide fractionation in the lower crust prior to ascent, through initial garnet fractionation. Fractional crystallisation within this depth range meant that later magnetite fractionation had only a minor impact on the partitioning behaviour of the chalcophile elements. In contrast, arc magmas transiting thinner crust may not experience sulfide saturation until a later stage in their evolution, induced by magnetite fractionation. Our results imply that convergent margin crustal thickness, and therefore the depth range of magmatic differentiation, determines the dominant control on initial magmatic sulfide saturation and therefore the primary distribution of chalcophile elements. This implies that secondary processes are required to explain the transport and concentration of sulfides and chalcophile elements at shallower crustal levels

    Continuous-wave Raman laser pumped within a semiconductor disk laser cavity

    Get PDF
    A KGd(WO4)(2) Raman laser was pumped within the cavity of a cw diode-pumped InGaAs semiconductor disk laser (SDL). The Raman laser threshold was reached for 5: 6W of absorbed diode pump power, and output power up to 0.8W at 1143nm, with optical conversion efficiency of 7.5% with respect to the absorbed diode pump power, was demonstrated. Tuning the SDL resulted in tuning of the Raman laser output between 1133 and 1157nm
    • …
    corecore